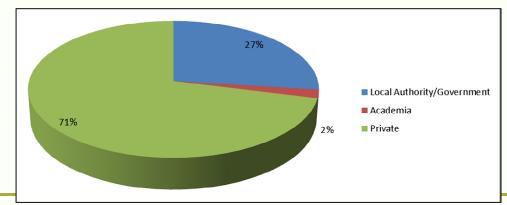
SoBRA Generic Assessment Criteria for Assessing Vapour Inhalation Risks from Groundwater Sources

Eleanor Walker, Atkins


Introduction

- Introduction to SoBRA
- Groundwater vapour sub-group work
 - objectives
 - methodology
 - outputs GAC/report
 - sensitivity and uncertainty analysis
 - assumptions and other considerations
- Summary
- Questions

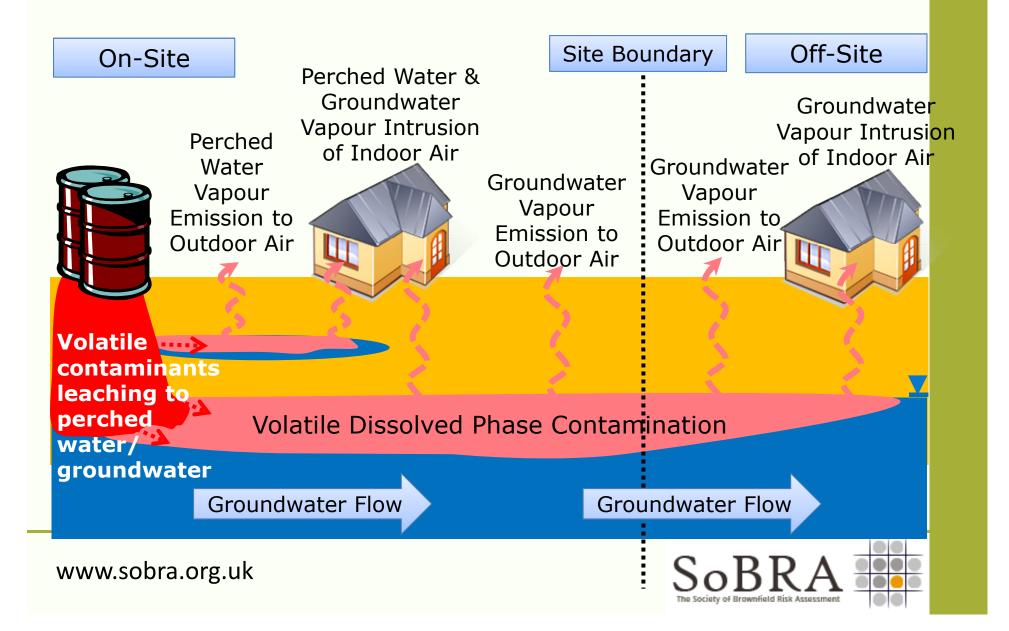
What is SoBRA?

- The Society of Brownfield Risk Assessment
- Learned society established in 2009 to support growing number of professionals working in land contamination risk assessment
- Aims:
 - improve technical knowledge in risk-based decision-making

enhance professional status/profile of risk assessment practitioners

Groundwater vapour sub-group

- Tim Rolfe (AECOM)
- Oliver Balcock (Ashfield Solutions Ltd.)
- Andrew Fellows (Atkins)
- Eleanor Walker (Atkins)
- Hannah White (Atkins/National Grid Property Holdings)
- Simon Clennell Jones (Delta Simons)
- Simon Firth (Firth Consultants Ltd.)
- James Rayner (Geosyntec)
- Naomi Earl (independent)
- Jonathan Parry (SLR Consulting)
- Executive Committee



Objectives

- Develop methodology for assessing chronic risk to human health via inhalation of groundwaterderived vapours in a manner compliant with current UK guidance
- Derive generic assessment criteria (GAC) for selected contaminants and accompanying guidance
- Free-to-use defensible conservative screening tool for GQRA
- Increase awareness of groundwater-vapour exposure pathway

What is the problem?

SOBRA report

- "Development of Generic Assessment Criteria for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater", v1.0, Feb 2017
- Available soon at: <u>http://sobra.org.uk/</u>

Methodology

- Produced using CLEA v 1.07 model
 - vapour inhalation pathways only
 - default gas ingress rate turned off
- Soluble (>1 ug/L), volatile contaminants (K_{aw} < 4 x10⁻⁴)
- Source depth 0.65 m
- Sand soil 1% SOM
- C4SL exposure parameters with minimal risk HCVs
- Physical-chemical parameters from EA SR7 (2008), Nathanail et al S4UL (2015), CL:AIRE/EIC/AGS GAC (2010)
- Sub-surface soil to indoor air correction factor (10) for TPH/BTEX

Step by step guide

- 1. Set up model with appropriate parameters/calculations
- 2. Derive results
- 3. Unhide/unprotect "Media Calculations" sheet
- 4. Convert reported soil solution concentration (pore water dissolved concentration) to GAC (mg/cm³ to ug/L)

GAC

- GAC for 66 contaminants
- Commonly analysed volatile constituents in groundwater
 - 19 Petroleum hydrocarbons
 - 4 PAHs
 - 3 Pesticides
 - 35 Halogenated Organics
 - 5 Others
- Residential and commercial land uses

Example GAC

Table 6 - GAC_{gwvap} for Petroleum Hydrocarbons

Chemical	CAS	GACgwva	Aqueous		
		Residential	Commercial	Solubility (µg/l)	
1,2,4-Trimethylbenzene	95-63-6	24	2,200	559,000	
Benzene ³	71-43-2	210	20,000	1,780,000	
Ethylbenzene 3	100-41-4	10,000	960,000 (sol)	180,000	
Isopropylbenzene	98-82-8	850	86,000 (sol)	56,000	
Propylbenzene	103-65-1	2,700	240,000 (sol)	54,100	
Styrene	100-42-5	8,800	810,000 (sol)	290,000	
Toluene 3	108-88-3	230,000	21,000,000 (sol)	590,000	
TPH Aliphatic EC5-EC6 3		1,900	190,000 (sol)	35,900	
TPH Aliphatic >EC6-EC8 3		1,500	150,000 (sol)	5,370	
TPH Aliphatic >EC8-EC10 3		57	5,700 (sol)	427	
TPH Aliphatic >EC10-EC12 3		37	3,600 (sol)	34	
TPH Aromatic >EC5-EC7 2,3		210,000	20,000,000 (sol)	1,780,000	
TPH Aromatic >EC7-EC8 ³		220,000	21,000,000 (sol)	590,000	
TPH Aromatic >EC8-EC10 3		1,900	190,000 (sol)	64,600	
TPH Aromatic >EC10-EC12 3		6,800	660,000 (sol)	24,500	
TPH Aromatic >EC12-EC16 3		39,000	3,700,000 (sol)	5,750	
meta-Xylene 3,5	108-38-3	9,500	940,000 (sol)	200,000	
ortho-Xylene 3,5	95-47-6	12,000	1,100,000 (sol)	173,000	
para-Xylene 3,5	106-42-3	9,900	980,000 (sol)	200,000	

Sensitivity analysis

- Sensitivity tested using CLEA for residential land use
- 5 contaminants: benzene, carbon disulphide, naphthalene, TCE, vinyl chloride
- Parameters tested
 - Soil type
 - Depth to source
 - Building type
 - SOM

Soil type

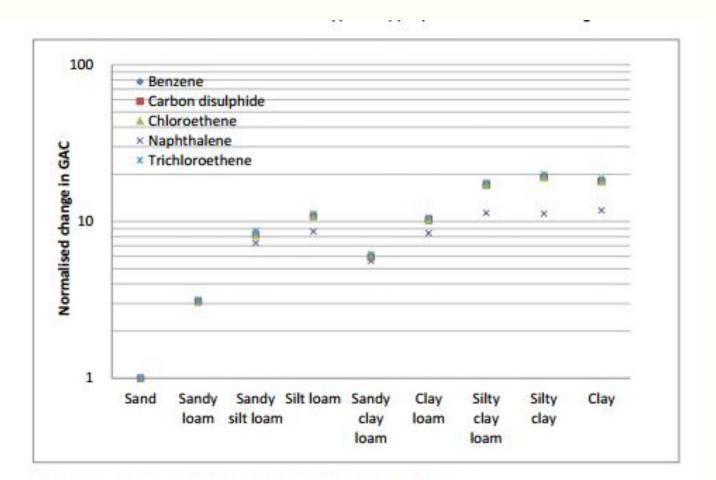


Figure 2 - Influence of Soil Type on Residential GAC gwvap

Depth to source

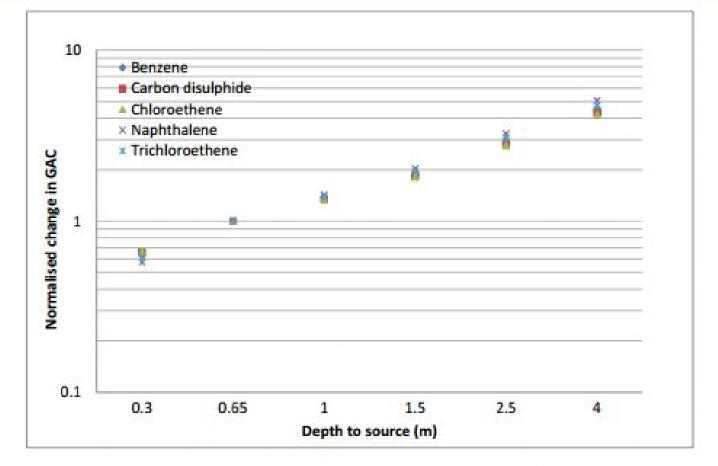


Figure 1 - Influence of Source Depth (i.e. Groundwater Depth) on Residential GAC_{gwvap}

Building type

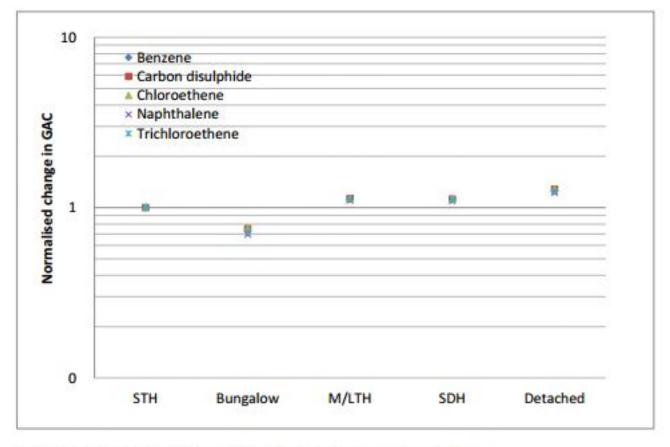
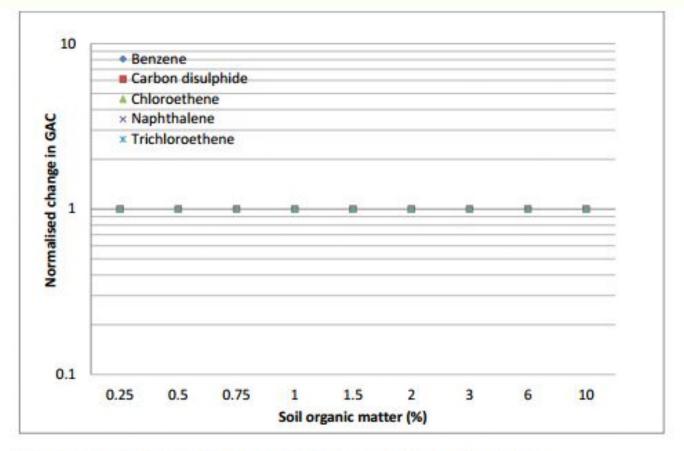



Figure 3 - Influence of Building Type on Residential GACgwvap

SOM

Sensitivity analysis summary

- Soil Type most sensitive parameter (sand to silty clay GAC increase up to 20x)
- **SOM** no effect on GAC
- **Building type** limited effect (within land use) 25-30% lower GAC for bungalow)
- **Depth to source** increasing depth to source to 4m increases GAC 4x

Comparison with J&E model

- CLEA uses USEPA Johnson & Ettinger (J&E) soil source vapour model
- J&E groundwater source vapour model accounts for reduced diffusion through capillary fringe – CLEA does not
- Run for sand, sandy loam and clay loam soils
- CLEA more conservative (predicted indoor air concentrations 1.5 to 7.1 times higher than J&E groundwater source vapour model)

J&E comparison - sand

Table 3: Comparison of CLEA and J&E predicted indoor air concentrations associated with the GAC_{gwvap} for residential land use with sand soil

Contaminant	Unit	Benzene	Carbon Disulphide	Naphthalene	Vinyl Chloride	TCE
CLEA Groundwater Residential GAC _{gwvap}	µg/I	211	56.2	216	0. <mark>6</mark> 2	5.65
CLEA predicted indoor air concentration	µg/m³	2.15	22.0	1.06	0.462	0.877
J&E predicted indoor air concentration	µg/m³	0.301*	3.18	0.262	0.0676	0.126
Ratio of predicted CLEA:J&E indoor air concentrations	1927	7.1	6.9	4.0	6.8	7.0

* soil to indoor air correction factor of 10 applied by dividing the J&E predicted indoor air concentration by 10

J&E comparison – clay loam

Table 5: Comparison of CLEA and J&E predicted indoor air concentrations associated with the GAC_{gwvap} for residential land use with clay loam soil

Contaminant	Unit	Benzene	Carbon Disulphide	Naphthalene	Vinyl Chloride	TCE
CLEA Groundwater Residential GAC _{gwvap}	µg/l	2190	575	1820	6.33	60
CLEA predicted indoor air concentration	µg/m³	2.15	22	1.06	0.462	0.877
J&E predicted indoor air concentration	µg/m³	0.429*	3.78	0.712	0.0769	0.167
Ratio of predicted CLEA:J&E indoor air concentrations	.	5.0	5.8	1.5	6.0	5.3

* soil to indoor air correction factor of 10 applied by dividing the J&E predicted indoor air concentration by 10

Conservative assumptions

- Assumes source directly beneath building
- Infinite source term
- No biodegradation
- Shallow source depth (0.65 m)
- Sand soil type
- Omission of capillary fringe

Conservative assumptions

- Intended for initial assessment of vapour migration pathways from groundwater/perched water
- Conservative screening criteria NOT remediation criteria
- Consider CSM and relevance of GAC to your site

Some other considerations

- GAC only consider vapour inhalation from groundwater/perched water source
- May need to consider other contaminant linkages (e.g. exposure from soil contamination/potential presence of NAPL)
- Preferential pathways
- Potential toxicological additivity (e.g. TPH)
- Potential degradation to more toxic daughter products
- Odour thresholds
- Uncertainty in recorded groundwater concentrations

Other approaches / considerations

- GAC intended as one potential tool for making an initial assessment of groundwater vapour risk
- May also consider:
 - empirical data on 'safe' lateral and vertical distances to source to screen out implausible risk
 - degradation of petroleum hydrocarbons in unsaturated zone
 - potential for acute risk
- Other recent UK / international guidance sign-posted in report

Summary

- GAC for 66 common volatile contaminants
- Methodology and step-by-step guide
- Conservative initial screening tool compliant with current UK guidance
- Consider applicability to your CSM

Questions

eleanor.walker@atkinsglobal.com

