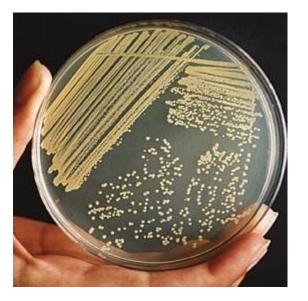


DIGGING THAT BIT DEEPER: A MOLECULAR APPROACH TO CONTAMINATED GROUNDWATER

Dr Henry Nicholls

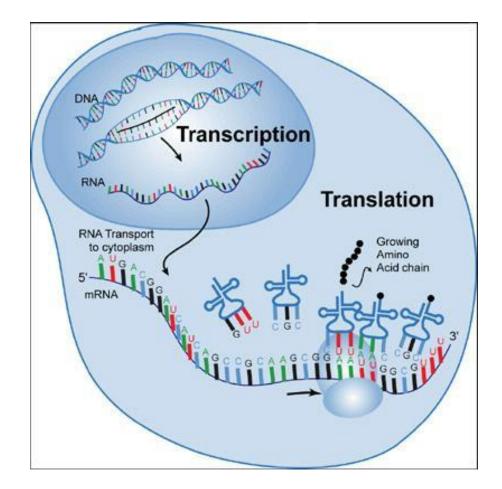

February 2017

h.nicholls@sheffield.ac.uk

ONCE UPON A TIME...

- Bacteria were observed!
- Revolutionary scientific discoveries

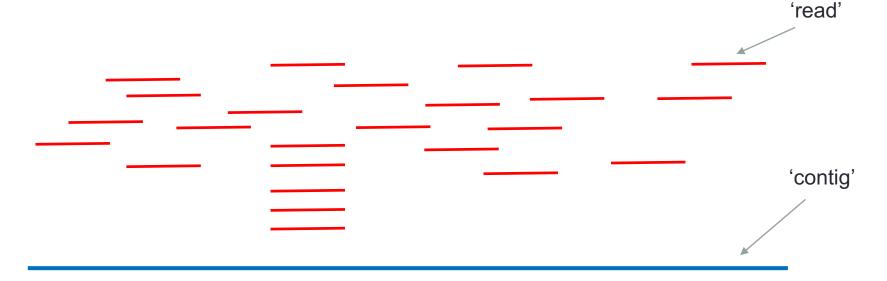
- Great, but...
 - Majority of bacteria do not grow in isolation
 - Variance in behavior when cultured in lab vs natural environment
- Molecular techniques can overcome these limitations


DNA (DEOXYRIBONUCLEIC ACID)

,Base Pairs	
Adenine	Thymine Cytosine
	Phosphate

A BIT FURTHER...

ALL IN SEQUENCE


DNA sequencing

- Next Generation Sequencing (NGS) Platforms
 - Illumina (sr)
 - Ion Torrent (sr)
 - PacBio (Ir)
 - MinIon (Ir)

DATA OVERLOAD!

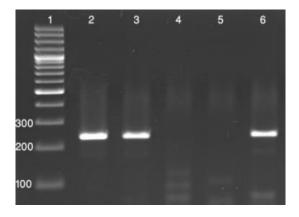
Assemble all that data! (Bioinformatics)

The

University Of

Sheffield.

GPRG

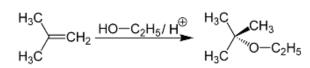

rotection

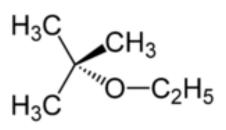
- Draft genome assembly
- Gene identification & characterisation

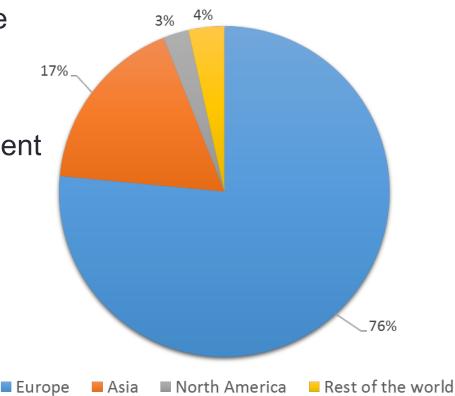
OTHER MOLECULAR METHODS

- PCR
- qPCR
- SIP

- Transcriptomics (RNA)
- RT-qPCR





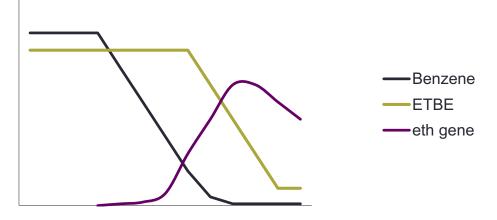

ETBE

Ethyl tert-butyl ether (ETBE)

- Petrol additive
- Produced from bioethanol
- Annual market demand increase
- High solubility in water
- Safety concerns
- Slow to break down in environment

WHAT'S ALREADY KNOWN?

- Many different organisms isolated have the ability to grow using ETBE as a sole carbon source (ETBE → Biomass & CO2):
 - Betaproteobacteria sp. IFP 2047
- Syntrophic interactions shown to be important for complete removal of primary substrate and intermediate compounds, e.g.
 - Rhodococcus sp. ETBE → TBA
 - Bradyrhizobium sp. TBA → Biomass & CO2
- Some organisms can use different GEOs (MTBE, ETBE & TAME), albeit at different rates
 - Achromobacter xylosoxidans MCM2/2/1
- Limitations of laboratory culturing, as discussed on previous slides


APPLICATION OF MOLECULAR METHODS TO ETBE

- Identified ETBE-degradative encoding genes *ethRABCD*
 - *EthR* Transcriptional regulator for the AraC/XyIS family
 - EthA Ferrodoxin reductase
 - *EthB* Cytochrome monooxygenase P-450
 - *EthC* Ferrodoxin
 - *EthD* Protein of unknown function
- High sequence similarity of the *eth* genes between strains
- Useful as a 'molecular marker', i.e. is the gene present (indicating ETBE degradation potential)
- Limited evidence of alternative genes are there more yet to be identified?
- DNA sequence can reveal who is present and the potential mechanisms (how), whereas RNA sequencing can detail both

RNA STUDIES

- Lack of information highlighting the mechanisms how other contaminants have an effect on ETBE degradation. BTX have been shown to reduce ETBE degradation (Gunasekaran et al. 2013)
- Example for MTBE Benzene delayed and ethylbenzene inhibited the expression of known degradative genes for MTBE and TBA (Joshi et al. 2016)
- These studies can highlight not only who is actively responsible for ETBE degradation, but also how. Additionally, if any other contaminants affect these

SUMMARY

- Molecular approach can be applied to groundwater contamination to gain a greater understanding of *in situ* and *ex situ* degradation processes
- These techniques are also complementary to 'traditional' methods
- Allows for the development of bioremediation strategies

Thank You

Any questions?

Acknowledgements

Many thanks to: Professor Steve Thornton Dr Steve Rolfe Ms Emma Mallinson Dr Mike Spence

ENVIRONMENTAL SCIENCE FOR THE EUROPEAN REFINING INDUSTRY

