Interpretation of Ground Gas Purge and Recovery Tests

Charlene Timmen, ARUP

Scope
Investigate the behaviour of gas in the subsurface by analysing continuous time series data from a variety of sources to better understand the driving processes for gas generation and migration.

OBJECTIVE
Analyse purge and recovery test data to determine whether diffusion can be used to explain the observed gas profiles.
INTRODUCTION

GasClam

- Portable, unmanned gas monitoring device
- Allows for long term gas monitoring
- Can measure methane, carbon dioxide and oxygen concentrations as well as atmospheric pressure and temperature. Optional CO, H2S and VOC’s
What are Purge and Recovery Tests?

- Use data to calculate a gas flow rate
- Used as an indication of active gas generation at a site
- Purge borehole with inert gas (Nitrogen)
- Seal and monitor rate of recovery of gas into borehole

Observed Gas Recovery Profile

- Curve similar to a typical diffusion curve
- Data plotted as early time series
- Seen to stabilize within first couple hours
Types of Flow

<table>
<thead>
<tr>
<th>Advective Flow</th>
<th>Diffusive Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darcy’s Law</td>
<td>Fick’s Law</td>
</tr>
<tr>
<td>(J = -\frac{k}{\mu} \nabla P)</td>
<td>(J = -D \nabla C)</td>
</tr>
</tbody>
</table>

Pressure Gradient | Concentration Gradient

Fick’s Law of Diffusion

- Ficks law: \(J = -D \Delta C \)
- Second law: \(\frac{\partial \phi}{\partial t} = D \frac{\partial^2 \phi}{\partial x^2} \)
- Solution to Fick’s law that most closely simulates the conditions of the purge and recovery test:

\[
C_t = C_0 e^{-\frac{a^2}{4Dt}}
\]

The diffusion coefficient is constant and the radius of the semi-infinite cylindrical volume is constant.
Diffusion Coefficient

• Diffusion coefficient: ‘the rate at which a diffusing substance is transported through a volume of space while a concentration gradient is present’

• Diffusion coefficient found by the gradient of the linear relationship of the natural log of the gas concentration through time

• Modelled and observed curves are matched by solving for the diffusion coefficient

Observed Methane

\[
y = -23.854x + 0.1499
\]

Modelled Methane

\[
y = -23.854x + 1E-14
\]

Modelling

Observed and modelled curve ‘matched’ by diffusion coefficient
Results

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Max Observed Concentrations CH4</th>
<th>Diffusion Coefficient of CH4 (m²/hr)</th>
<th>Correlation Coefficient between observed and modelled CH4</th>
<th>Max Observed Concentrations CO2</th>
<th>Diffusion Coefficient of CO2 (m²/hr)</th>
<th>Correlation Coefficient between observed and modelled CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRBH02</td>
<td>7.4</td>
<td>0.0049</td>
<td>0.95</td>
<td>2.0</td>
<td>0.0032</td>
<td>0.92</td>
</tr>
<tr>
<td>MWBH04</td>
<td>23.2</td>
<td>0.0057</td>
<td>0.97</td>
<td>4.8</td>
<td>0.0031</td>
<td>0.94</td>
</tr>
<tr>
<td>MWBH12</td>
<td>7.0</td>
<td>0.0017</td>
<td>0.70</td>
<td>8.4</td>
<td>0.0021</td>
<td>0.74</td>
</tr>
<tr>
<td>IRBH04</td>
<td>2.7</td>
<td>0.0012</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290BH06</td>
<td>31.2</td>
<td>0.0050</td>
<td>0.95</td>
<td>3.0</td>
<td>0.0004</td>
<td>0.79</td>
</tr>
<tr>
<td>MWBH04</td>
<td>7.4</td>
<td>0.0049</td>
<td>0.95</td>
<td>2.0</td>
<td>0.0032</td>
<td>0.92</td>
</tr>
<tr>
<td>229WS4</td>
<td>2.8</td>
<td>0.0012</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279WS105</td>
<td>6.3</td>
<td>0.0023</td>
<td>0.99</td>
<td>3.0</td>
<td>0.0007</td>
<td>0.89</td>
</tr>
<tr>
<td>211BH01</td>
<td>61.7</td>
<td>0.0023</td>
<td>0.99</td>
<td>39.2</td>
<td>0.0023</td>
<td>1.00</td>
</tr>
<tr>
<td>211BH02</td>
<td>13.9</td>
<td>0.0010</td>
<td>0.97</td>
<td>11.9</td>
<td>0.0009</td>
<td>0.97</td>
</tr>
<tr>
<td>290BH06</td>
<td>3.0</td>
<td>0.0007</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average (mean)</td>
<td>0.0027</td>
<td>0.91</td>
<td></td>
<td>0.0015</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

Free air phase diffusion coefficient of CO₂ (m²/hr): 0.050
Free air phase diffusion coefficient of CH₄ (m²/hr): 0.054

Lack of correlation between diffusion coefficient and gas concentration

Correlation Coefficient for Carbon Dioxide = 0.27
Correlation Coefficient for Carbon Dioxide = 0.24
Gas filled porosity or effective porosity

\[D_{ij}^e = \tau \theta_i D_{ij} \]

Tortuosity, Effective Porosity

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Material of Surrounding Ground</th>
<th>Calculated Effective Porosity Range (%)</th>
<th>Literature Effective Porosity Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRBH02</td>
<td>Glacial till and sandstone</td>
<td>15 - 17</td>
<td>12 - 41</td>
</tr>
<tr>
<td>MWBH04</td>
<td>Made ground - ash and clinker</td>
<td>14 - 16</td>
<td>1 - 25</td>
</tr>
<tr>
<td>MWBH12</td>
<td>Made ground - ash and clinker</td>
<td>7 - 10</td>
<td>1 - 25</td>
</tr>
</tbody>
</table>

Advective Flow (Pressure Driven)

- Site known to have advection driven flow
- Poor fit of observed data to modelled curve
- High deviation away from the modelled curve especially after the early time monitoring data
Conclusions

• Purge and recovery tests can be used to calculate the diffusion coefficient and effective porosity of the surrounding material around a borehole

• Diffusion coefficient dependent on the effective porosity

• Advection driven flow differs from the observed diffusion gas profile, area for further research

• Purge and recovery gas profiles are diffusion based flow rather than advective flow, not an indication of active gas generation

Further Work

• Describe how the observed profiles vary from the modelled diffusion curves when active gas generation is occurring

• Look further into the surrounding geology of the borehole and how this relates to the results
References

• Naylor, J. and Talbot, S. Ground Gas Solutions Limited, May 2012; pers.comm.

