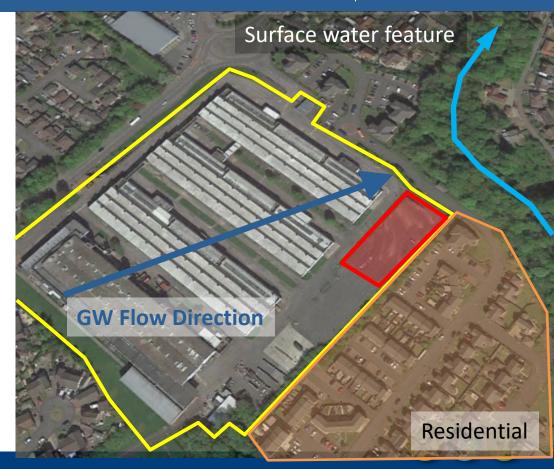


A combined thermal treatment and MPE solution for a chlorinated solvent source area and groundwater plume in a fractured bedrock system

Geosyntec[▷] consultants

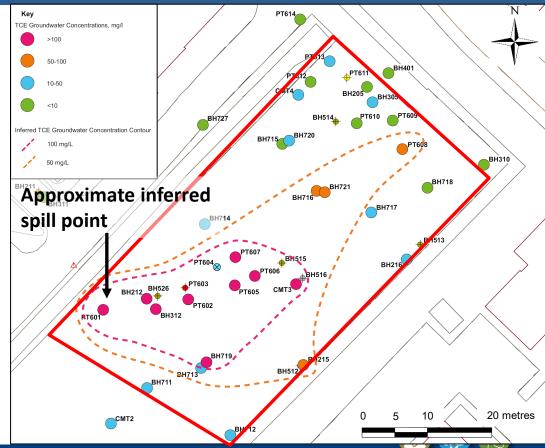
Helen Haworth With thanks to: Andrew Morgan, Jim Wragg, Sean Needham, Marcus Ford

- Definitions of ERH and MPE
- Site Background
- Contaminant Distribution
- Remediation Design & Installation
- Remediation Implementation
- Remediation Verification Results
- Conclusions / Key Takeaways



Geosyntec[▷] Definitions - What is ERH & MPE? consultants ERH = Electrical Resistive Heating MPE = Multi-Phase Extraction OWER CONTROL UNI SOIL VAPOR GROUNDWATER Image courtesy of TRS Europe Image courtesy of USGS Know the Risk in Advance

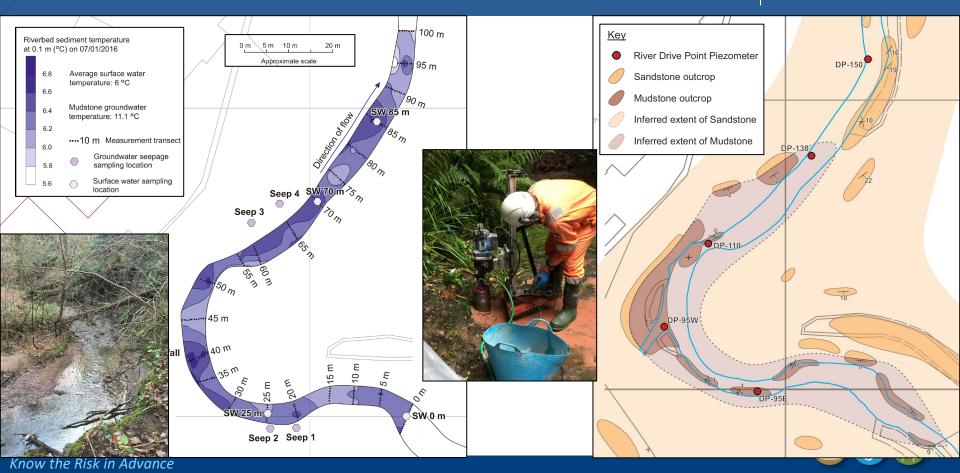
Site Background



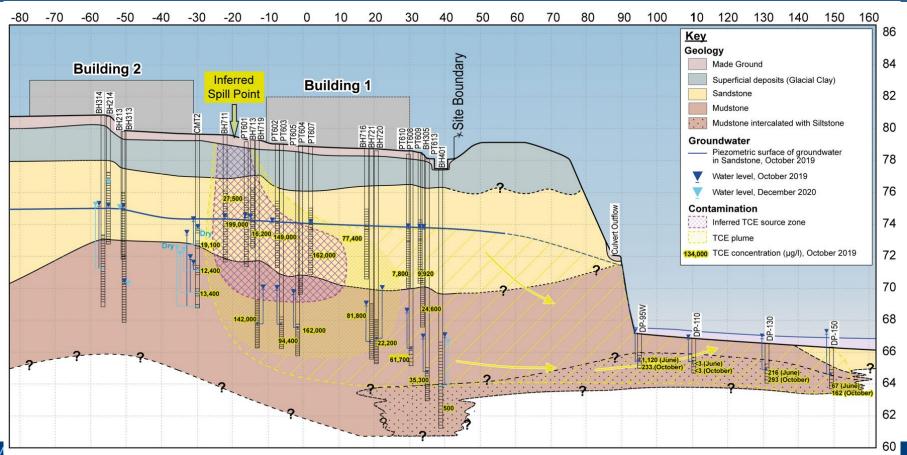
- Former manufacturing facility active since 1940s, operations ceased 2018
- Glacial Till underlain by Carboniferous Upper Coal Measures (Sandstone & Mudstone Facies)
- Surface water feature 40-50m beyond NE site boundary
- Residential area down and crosshydraulic gradient
- Client seeking to surrender environmental permit and achieve regulatory sign-off

Contaminant Distribution

- Historical release of TCE 40+ years ago
- Soil concentrations of up to 380 mg/kg TCE in glacial clay around inferred spill point
- Created a 100 mg/l TCE groundwater plume in bedrock



<u>Ge</u>osyntec


consultants

Groundwater-Surface Water Interaction

Contaminant Distribution - CSM

Geosyntec[>]

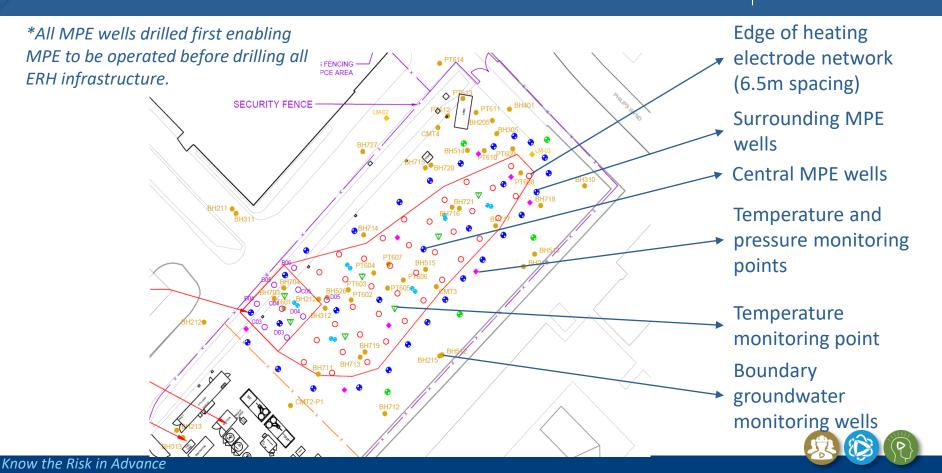
consultants

Knov

Remedial Objectives

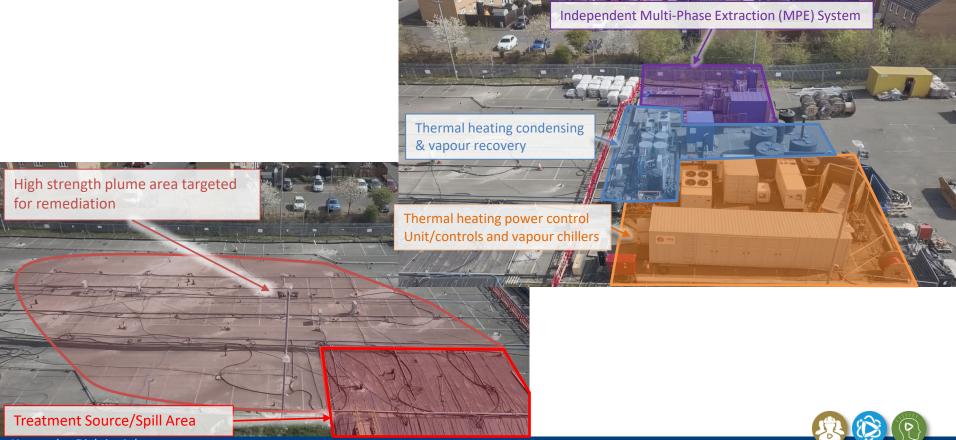
- 1. Reduce soil TCE concentrations from 200-300 mg/kg to <1 mg/kg
- 2. Remove 90% of total TCE source
 - Reduce groundwater TCE concentrations from ~200 mg/l to <5 mg/l
- 3. Show TCE betterment
 - Groundwater quality in river drive points
- 4. Provide multiple lines of evidence verifying ERH treatment does not exacerbate soil vapour intrusion potential to nearby residential zone

Remediation strategy

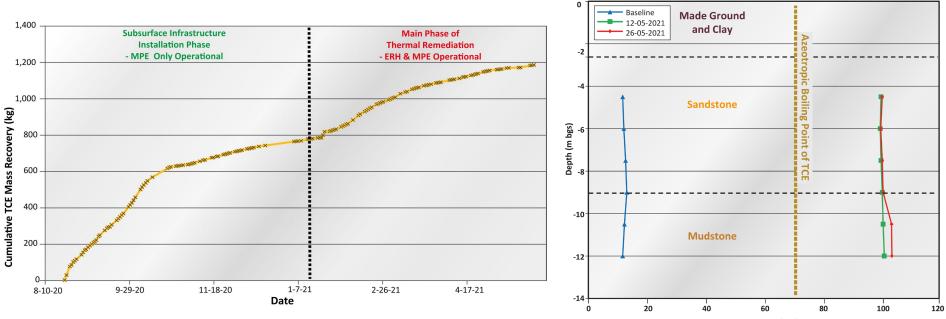

- Why thermal remediation?
 - Difficult remedial goals for traditional technologies (ISCO, MPE, etc) in fractured bedrock, supported by contractor engagement
 - Thermal alternative approach was considered BAT by project team and regulator

• Why combine ERH and MPE?

- Regulatory concerns / remediation objectives
 - Regulator was nervous of vapour / hot groundwater migration potential
- Known effects of drilling
 - Observations during previous investigations showed that drilling works mobilised TCE mass locally


Remediation Design & Implementation

Remediation Infrastructure

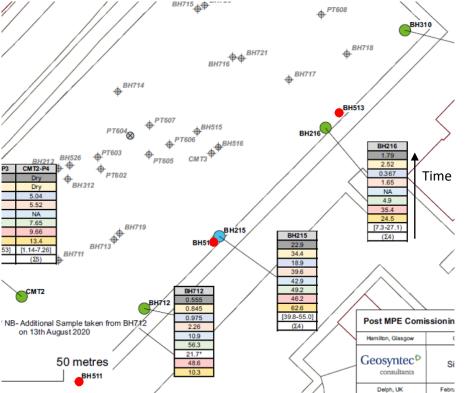


Know the Risk in Advance

Results – TCE Mass Recovery

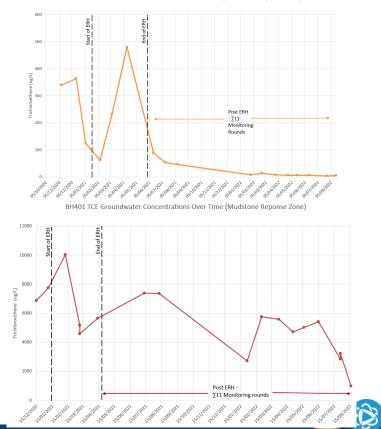
Temperature (°C)

TCE Groundwater Concentration – Post Remediation



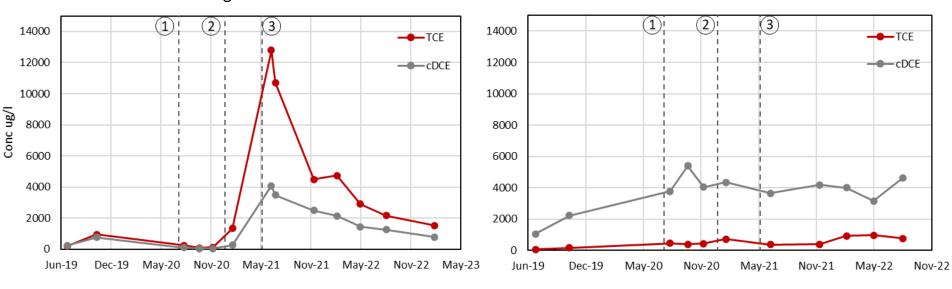
Shallow Sandstone Wells	Nearest Environmental Charaterisation well / TCE Concentration			PE Operati itoring Per		ERH Operational from 15/1/20 - 28/5/21 MPE Operational from 17/3/21 - 10/6/21				Onsite Validation Period ERH + MPE System Shutdown		
vvens	Oct-19	01-Dec-20	09-Dec-20	14-Dec-20	06-Jan-21	09-Feb-21	09-Mar-21	12-May-21	18-May-21	21-May-21	15-17-Jun-21	12-14 july 2021
CMW-D04S	PT601 - <mark>199mg/l</mark>	dry	dry	dry	dry	dry	dry	dry	0.020	0.013	0.029	0.504
CMW - F03S	BH719 - <mark>142mg/l</mark>	dry	dry	dry	dry	24.69	38.61	0.477	dry	0.107	0.15	0.57
CMW - D06S	BH607 - <mark>162mg/l</mark>	2.61	dry	dry	36.7	dry	dry	dry	0.075	0.052	0.063	0.054
CMW - G05S	BH605 - <mark>162mg/l</mark>	21.5	dry	dry	51.5	1.98	0.728	dry	0.194	0.095	0.109	0.182
CMW - G08S	BH716 - <mark>77.4mg/l</mark>	dry	0.393	0.201	0.423	0.015	0.600	0.417	dry	0.249	0.235	0.064
CMW - F11S	BH717 - <mark>42.7mg/l</mark>	1.02	1.17	3.64	5.01	2.3	0.996	0.450	dry	0.460	0.448	0.395

Deeper Mudstone Wells	Nearest Environmental Charaterisation well / TCE Concentration			PE Operati itoring Per			rational fro rational fro		Onsite Validation Period ERH + MPE System Shutdown			
	Oct-19	01-Dec-20	09-Dec-20	14-Dec-20	06-Jan-21	09-Feb-21	09-Mar-21	16-Apr-21	12-May-21	21-May-21	15-17-Jun-21	12-14 july 2021
CMW - D04D	PT601 - <mark>199mg/l</mark>	9.04	11.8	9.78	8.87	20.44	11.45	0.362	0.198	1.782	2.16	0.04
CMW - F03D	BH719 - <mark>142mg/l</mark>	31.9	43.2	62.5	90.7	72.66	42.14	0.321	0.004	0.005	0.004	0.003
CMW - D06D	PT607 - <mark>162mg/l</mark>	34.3	19.8	16.7	31.1	12	4.70	2.857	8.585	1.815	0.104	2.41
CMW - G05D	PT605 - <mark>162mg/l</mark>	39.8	20.9	22.4	54.5	17.86	8.56	0.014	3.470	0.401	0.107	1.52
CMW - G08D	BH716 - <mark>77.4mg/l</mark>	11.4	13.0	7.98	18.4	14.06	7.26	0.140	0.023	0.049	0.24	0.082
CMW - F11D	BH717 - <mark>42.7mg/l</mark>	27.9	20.4	23.7	41.9	21.4	0.82	0.394	0.607	0.591	0.381	0.7


Peripheral TCE Groundwater Concentration – Post Remediation

BH310 TCE Groundwater Concentrations Over Time (Sandstone Response Zone)

Geosyntec[⊳]


consultants

Know the Risk in Advance

Groundwater Quality Entering River

95 m from edge of source zone

150 m from edge of source zone

 Start of drilling of Remediation Wells in Car Park

2 Start of ERH treatment

③ End of ERH treatment

Conclusions & Key Takeaways

- 1. Combined MPE and ERH successfully addressed regulator concerns and site objectives
- 2. The combined approach did not adversely affect ERH performance
 - Estimated timeframe maintained
 - Same energy provision used
- 3. Operating MPE and ERH in parallel requires continual performance assessment and optimisation to achieve "balance" between both systems
- 4. MPE during subsurface infrastructure phase of ERH was a key benefit for a fractured bedrock with a mass flux remediation objective

A combined thermal treatment and MPE solution for a chlorinated solvent source area and groundwater plume in a fractured bedrock system

Helen HAWORTH Email: <u>Helen.Haworth@geosyntec.com</u>

YCLF Sheffield – 3rd March 2023

Geosyntec[▷] consultants

