Geophysical approaches for landfill ground model development

Jimmy Boyd on behalf of the Shallow Geophysics Capability and the RAWFILL colleagues Cornelia Inauen, Jonathan Chambers, Ben Dashwood, Arnaud Watlet, David Caterina, Itzel Isunza Manrique, Mihai Cimpoiasu, Dave Gunn, Dave Morgan, Frederic Nguyen, Russell Swift, James Whiteley and others

CONTENTS

Talk overview

- What was the RAWFILL project?
- Near surface geophysical methods
- A landfill case study (Emersons Green)
- Ground model development

The work presented here was funded by **The RAWFILL project:** supporting a new circular economy for **RAW** materials recovered from land**FILL**s

The Interreg North-West Europe Project is coordinated by SPAQuE and unites 8 partners from 4 EU regions.

Why was the RAWFILL project conceived

- Potential Recover and valorise raw materials from landfills
 → transition towards "circular economy"
- Reclaim land
- Reduce soil and groundwater contamination environmental risks
- Reduce the costs of the after-care activities of landfills
- Produce green energy
- Reduce GHG emissions
- In order to "mine" landfills you need to be able to characterised them well first

Landfills \rightarrow change in Paradigm

Opportunity Recover large volumes of resources:

- Materials
- Energy
- Land area

LANDFILL MINING

Barriers

- Lack of knowledge about recovery potential (materials and energy) in terms of volume, content, extraction feasibility and environmental impact
- Expensive traditional exploration methods

Goals of RAWFILL project

- Create landfill (LF) inventory framework & Decision Support Tool to rank Landfill Mining projects
- Develop improved LF characterisation with geophysical imaging and targeted sampling

RAWFILL test sites

Why geophysics?

• High heterogeneity of landfills

Why geophysics?

Good spatial characterization can be costly and lead to higher crosscontamination risks.

Why geophysics?

Advantages:

- Non-invasive
- Quasi-continuous spatial coverage
- Relatively low cost

Disadvantages

- Indirect information
- Non-unique solutions
- Smooth blurred images
- Distortions & artefacts

Geophysics: increase certainty

 Combine complementary geophysical methods to reduce ambiguities

 Apply target sampling for validation and calibration

Lower costs

Reduced risk of damaging structures, contamination and exposure to hazardous material

GEOPHYSICS

Proposed workflow

Geophysical methods

	[Mapping		Profiling					
		EMI	MAG	ERT	IP	MASW	SRT	GPR	HVSRN
Landfill structure	Lateral								
	extent								
	Cover Layer								
	thickness								
	Vertical								
	extent								
	Utilities								
Landfill characterization	Waste								
	zonation								
	Leachate								
	content								
Environmental conditions	Geology								
	Groundwater table								
Staff required for survey		ţţ	Ť	ţţ	ţţ	ţţţ	tt t	Ť	Ť
Required time for survey		Ð	Ċ	ĊĊ		COD	Œ	\bigcirc	Ð
Required time for processing		Ð	(E)	ÐÐ	U	999	ÐÐ	D D D	Ð

Geophysical methods

- Measure different/complementary geophysical properties
- Have different advantages and disadvantages

Mapping methods:

- Provide a wide spatial coverage
- Relatively easy to deploy and acquire data

Profiling methods:

- Provide more detail and vertical resolution
- Require more staff time for fieldwork and processing

13

Electromagnetic Mapping (EM)

Parameters measured:

- Electrical conductivity
- Magnetic susceptibility

Sensitive to:

- Leachate content
- Pore fluid conductivity
- Metal content

Electromagnetic Mapping: Delineating landfill extent

15 **BGS**

GEOPHYSICAL PROFILING METHODS

Ground Penetrating Radar

Survey direction
Transmitting antenna
Reflected wave (t,)

Dependent physical Property:

- Permittivity; conductivity
- Signal attenuates fast in very conductive material such as waste
 - mainly used to detect cover layer thickness

Ground Penetrating Radar: Delineate Cover Layer

GEOPHYSICAL MAPPING METHODS

Magnetics

Parameters measured:

- Earth's magnetic field intensity
- Magnetic susceptibility

Sensitive to:

- Metallic items
- Metal content

Magnetics: Delineating landfill extent

Electrical Resistivity Tomography (ERT) Induced Polarisation (IP)

Interreg North-West Europe RAWFILL Leven land leven set

Parameters measured:

- Electrical resistivity (ERT)
- Chargeability (IP)

Sensitive to:

- Leachate/water content
- Pore fluid composition
- Metal content
- Size and shape of grains/pore space
- Connectivity of pores

20

GEOPHYSICAL PROFILING METHODS

BGS

East

ERT/IP: Zones of different composition & saturation

West

ERT/IP: HDPE membrane limits applicability

 If waste is completely isolated by HDPEmembrane is inaccessible to ERT/IP measurements

ERT in a monitoring context

- Sensitive to changes in resistivity.
 - Can detect changes in moisture content associated with rainfall.
 - Detects changes to pore fluid conductivity (leachate migration for example).

GEOPHYSICAL PROFILING METHODS

Active Seismics

Parameters measured:

Propagation velocity of seismic waves

Sensitive to:

 Ground stiffness, elasticity and density (mineral content, lithology, porosity pore fluid saturation and degree of compaction)

Active Seismics

Active Seismics: Delineate landfill base

- Municipal solid waste
- Active landfill with several waste cells

GEOPHYSICAL PROFILING METHODS

Co-funded by the Walloon region

Active Seismics: Delineate landfill base

BGS

CASE STUDY

Applying geophysical methods to a case study: **Emersons Green**

CASE STUDY

BGS

29

Emersons Green

- Location: UK, near Bristol
- Excavated for new housing in 2019

CASE STUDY

Emersons Green

- Location: UK, near Bristol
- Excavated for new housing in 2019
- Ground truth data to calibrate geophysics

Site Information

• Landfill size: 23,000m2

Landfill operation (1984 – 1991)

- Inert & industrial/commercial waste
- Dilute & disperse basis

Geology:

- North: Mudstone
- South: Sandstone
- East: historic quarry

Site Information: Ground truth data

Ground truth data available across site:

- 59 Trial pits
- 12 Boreholes

	Name	Thickness			
Cap	Clay cap	up to 2.6m average: 1.1m			
a	Municipal solid waste (MSW)	min: 0.3m max: > 4.1m			
Waste materi	Municipal solid waste (MSW) + inert content	min: 0.6m max: > 3.4m			
	Quarry backfill	0.7m to 2m			
Host	Clay	-			
	Mudstone	-			
	Sandstone	-			

Site Information: Knowledge Gaps

Waste thickness unknown towards centre of landfill \rightarrow difficult to estimate waste volume

Structure of landfill unclear. Is there a change in waste composition towards East?

\rightarrow Use geophysics to fill these knowledge gaps

Geophysical methods

MAPPING METHODS

Lateral extent Metallic items Metal content

Lateral extent Leachate content Metal content

PROFILING METHODS

Waste types Leachate content Thickness of landfill Layers of different stiffness Thickness of landfill

34

Geophysical characterisation: Measurement extent

Resource Model Building

~3 day campaign with 4 personal

5 BGS

Geophysical characterisation: Results EM

Cell type structure?

Additional cell with less metal content or thicker cover layer?

Geophysical characterisation: Results MASW

Calibration and Validation

Additional ground truth data through excavations

- The landfill was separated into three cells. These cells were excavated into the natural clayey ground and filled with waste.
- A thicker clay cap and a thinner waste layer was found in cell 3.
- A step in the landfill base between cells 2 and 3 might be associated with the underlying sandstone.

Calibration & validation

The waste composition was a mix of plastic, metal, wood, paper, fabric, inert with no strong compositional changes across the site.

clay cap thickness

base of waste layer

clay stank dividing the waste cells

Calibration and Validation

EM: good delineation of waste cell extent and cover layer

Lower conductivities of cell 3 are probably associated with a thicker cover layer and a thinner waste layer

Calibration and Validation

Building Resource Distribution Model

BGS

Building RDM: Correlation Analysis

Building RDM: Correlation Analysis

Building RDM: machine learning Classification

- Tested and compared different classification algorithms.
- Best results achieved with Neural Network.

47.5

Building RDM: Volume rendering

Conclusion

Using geophysics for LF characterisation:

- Is cost effective.
- Delivers relatively high resolution data (when mapping and profiling techniques are combined).
- Allows targeted sampling.
- Allows reliable interpretation when combining different methods and targeted sampling.

Outlook

- Uncertainties not yet considered.
- Machine learning classification maybe a good approach to combine geophysical methods and ground truth data.
- Using geophysics to monitor leachate and gas migration.

Thank you

<u>Contacts</u> Me: *jamyd91@bgs.ac.uk* Team leader, Prof. Jon Chambers: *jecha@bgs.ac.uk*

